
AD-A240 494H ilS WIl IlUlllI'I I H1IIlhII I

RJ 8180 (75139) June 19, 1991
Computer Science

Word Problems - This Time with Interleaving

Alain J. Mayer' Larry J. Stockmeyer
Dept. of Computer Science IBM Research Division

. .C Brown University Almaden Research Center
Providence, RI 02912. 650 Harry Road

San Jose, CA 95120-6099

SE 81991

Abstract. We consider regular expressions extended with the interleaving ope -tor, and
investigate the complexity of membership and inequivalence problems for these expressions.
For expressions using the operators union, concatenation, Kleene star, and interleaving,
we show that the inequivalence problem (deciding whet-er two given expressions do not
describe the same set of words) is complete for exponential space. Without Kleene star, we
show that the inequivalence problem is complete for the -class Z' at -the second level of the
polynomial-time hierarchy. Certain cases of the membership problem (deciding whether a
given word is in the language described by a given expression) are shown to be N-P-complete.
Special cases of the membership problem which can be solved in polynomial time are also
discussed.

Thi-ls document has been approved
for public xelease and sale; its
distribution is unlimited.

91-08896

'The research of this author was partly supnorted bylONR gr ant N00014.91-J.1613. Part of this work
was performed while the author was at the IBM T.J. Watsortiesearch Center.

1 Introduction

There has been considerable progress in classifying the the computational complexity of
decision problems involving "regular-like" expressions. Such-expressions are- similar to- the
Kleene regular expressions of finite-automata theory, but may contain operators on sets
of words other than the usual operators union, concatenation, and star. Problems which
have been studied include inequivalence, i.e., deciding whether two given -expressions do not
describe the same set-of words, and membership, i.e., deciding whether a given word is in
the language described by a given expression. Previous work on this subject can be found,
for example, in [Furer80, Hunt73, HRS76, Stock74, StM73]; see also [AHU74, HU79]. In
particular, we focus here on the interleaving operator. The interleaving of words x and y,
denoted zjy, is the set of all words of the form

X I Y1z2Y2... ,kYk

where k > 0, z = ZX2... ZX, y = Y.y2... yk, and where the words zi and yi, I < z < k, can
be of arbitrary length (including the empty word).

The motivation to investigate the interleaving operator is twofold. First, the interleav-
ing operator can be interpreted as the simplest case of -the composit:on operator used in
algebraic approaches to modeling concurrent computation. Interleaving represents the case
where processes run concurrently in such a. fashion that their atomic steps can be arbi-

trarly interleaved but where no communication between them takes place. Ore of the best
known formalisms for specifying and verifying concurrent systems is CCS (sae [Miln80]).
In [Miln84] a restricted set of algebraic operators (i.e. {., U, -)- is used to form the star
expressions in CCS. These expressions are syntactically identical to regular expressions,
but instead of having as semantics "sets of strings", their sejtiantics is "equivalence classes
of processes". In [KS90] it is shown that the observational equivalence problem of star
expressions is solvable in polynomial time. We believe that the techniques presented in-this
paper will be useful to determine the complexity of the observational equivalence problem

of star expressions extended by a suitably defined composition operator. This is an open DTIC

question of [KS90].

Secondly, as we discovered while doing this work, the interlea:ving operator has some

interesting properties of its own: Succinctness: The use of the interleaving operator can 6

shorten a regular expression by an exponential amount. Simulation of Integer Addi-
tion and Intersection: Under certain format restrictions, addition of positive integers
and intersection of expressions can be simulated by the use of the interleaving operator.
Complexity: The inequivalence problem for expressions with interleaving, but without
star, is one of the few natural problems known to be E£-complete.

We now outline the remainder of the paper. Definition are given in Section 2. in

. ection 3, we present a language for which a succinct expression with interleaving exists but I Li
every regular expression is longer by an exponential factor. Section 4 illustrates the nature

)f the interleaving operator via the membership problem restricted to expressions containing
*. constant number of interleavings. In Section 5, we show certain cases of the membership.......
problem to be NP-complete. One such case is the problem of determining, given words
Z. ul,... ,u (with n variable), whether z can be written as an interleaving of ul,...,tz. . Codes
zections 6 ind 7 are devoted to the inequivalence problem for expressions without and

1.-1 or
Statement A per telecon -..

Gary Koob ONR/Code 1133
Arlington, VA 22217-5000

N W 9/16/91

with trie Kleene star, respectively. In the case without star, we show that interleaving is
powerful enough to siAulate addition of integers under certain format restrictions. We can
then emulate a proof of [Stock771 to show that the inequivalence problem is EP-complete.
In -Pth case with star, we shcw that interleaving can simulate intersection, again under
appropriate format restrictions. We -can then emulate a proof of (Furer8O] to show that the
inequivalence problem is-exponential-space-complete.

2 Definitions

Basic familiarity with regular expressions, time and space complexity, polynomial-time re-
ducibi!ity, and complete- problems is assumed. The necessary background, if needed, can be
found in [AHU741 or [IIU79], for example.

We now define more precisely the types of expressions and problems of interest. Let i
denote the-empty word. Let S be afinite alphabet and let S be a subset of the operators
{ u,.,*,n,}. We define the S-e-,pTesswns (over Z) and simultaneously define the operator
L-which maos each S-expression to a-subset ofZ:

1. For every o- E ZX. {e}, a is an S-expression, and L(o) = {a};

2. If r, and r2 are S-expressions and @ E S - { = }, then (r, @ T2) is an S-expression,
and L((-'1 @ r2)) = L(ri) @ L(r 2);

3. If r is an- S-expre-3sion, then (r') is an S-expression, and L((r)) = (L(T)).

In 2, the interleaving operator is extended to sets of words in the obvious way, i.e., L1 L2 is
the union-of the sets wllw2 taken over'all wi E L1 and w2 E L2 . When writing expressions
in the text, ext-aneous parentheses are often omitted. Although it is sometimes convenient
.o use E wh-n writing expressions, our results do not change if expressions cannot contain
E.

Letting S be as above, the problem MEMBER-S is the problem of deciding, given an
S-expression r and a word w E E*, whether w E L(r). The problem INEQ-S is the problem
of deciding, given two S-i.';ressions Tr and r2, whether L(Tr) - L(r 2). The problem NEC-S
is a special case of INEQ-S; here the problem is to decide, for a given-r, whether L(r) - E'.

IwI denotes the le:gth of the word w, and fri denotes the length of the expression r.
It will be useful to define I also as an operator on nondeterministic finite automata

(NFA's) M, and : 2 in such a way that L(Af I M2) = L(M 1) I L(M 2). Here is the relevant
definition (see :Eilen74]):

Let If, = (Q,,Z, ,,po,,Z) (i = 1,2) be an NFA with (in notation of [AHIU7.11) state
set Q,, input alphabet Z, transition function 5,, initial state 0,, and accepting states
F,. Then f = Mi I :f 2 is defined as follows:
M = (Q1 X Q2, Z, 6, [POI ,po21, F) where the new transition relation 6 is defined as
6([ql,q2j,a) = (61(qj,a) x {q2}) U ('q} x 62(q2,a)), and the new set of accepting

states F is defined by F([ql,q2j) = F1(qj) A F2(q2).

Note that the number of states of M1 IM2 is the product of the number of states of M1
and the number of states of M-2.

2

3 On the Expressiveness of Interleaving

In this section, we will- show an example in which the use- of the interleaving operator
shortens a regular expression by an exponential. amount. Consider the alphabet E,, =
{a,oa2,.. ,u,} and the language L,, of all permutations of length n in E , i.e., L,, is the
set of words of length n in which each symbol ar, appears exactly once. Obviously, wve have
L, = L(oala21 ... 1rn). But as the following proposition shows, there is no standard regular
expression of polynomial length denoting L,.

Proposition 3.1 Every {j, .," }-expression r with L(r) = Ln has Irl = Q(2').

PROoF: For S C E,, let the word w(S) be the concatenation of the symbols in S in order
of increasing index. Let S denote the complement of S with- respect to En. Note that for
any S, w(S)w(S) E L,. We claim that the number of subsets of En, namely 2' , is a lower
bound on the number of states of any NFA accepting L,.

Assume that there is an NFA M with fewer states. Then- there are two subsets S and
T with S - T and a state q such that there is -a computation path of M on input w(S)
from the start state to q, a path on input w(T) from the start state to q, a path on input
w(Y) from q to an accepting state, and a path on input w(T) from q to an accepting state.
Assuming (without loss of generality) that S is not a subset of T, there must be a Oj in S
which is not in T, so a, is in T. Therefore, M accepts the word w(S)w(T) which contains
two occurrences of o Thus any NFA accepting L,, must have at least 2n states. Since

any regular expression r can be converted to an equivalent NFA having O(Ir) states, the
proposition follows. 0

4 Example: Interleaving of a Constant Number of Strings

To illustrate the interleaving-operator we show how to answer the followh, question in a
straightforward way: z E L(uj I u2 I ... I uk) ?, where k is a consta, ,,1" < k) and z
are strings over some alphabet S, and fujl = n and Izi = ;n.

1. Construct the NFA M for ul I U2 .. I Uk. Its transition diagram will be an nxn. .. xn
(k times) grid of states. Thus we can think of it as a k-dimensional hypercube of side
n. Assume that the start state is at the "upper left" corner and the only accepting
state (se) is at the "lower right" corner. Every state has at most k successors, each
of which has one coordinate closer to s,. Thus there are O(nk') states and O(n ')

transitions. Note that every path from the starting state to the accepting state has
length kn.

2. Let S be a set of states. Simulate .11 on input z by storing in S the states which M
can reach after reading the prefix of z consumed so far. After reading at most kn
symbols one of the following two conditions will become true: (i) S = ;} and thus
REJECT or (ii) S = {s,} and -hus ACCEPT. Note that the size of S can be at most
0(n -), since there are at most O(n - ') states at distance 1 (1 < I < kn) from the
start state.

3

It can be easily verified that the above procedure can be carried out using O(nk) .ime and
Q(nk- l) space on a unit-cost RAM. In [vLN82] a dynamic programming algorithm was
used to-improve the time performance to O(nk/logl/(k- 1)n). This was further improved
by [IPC85] to O(nk/logk/(k-l)n).

This result is easily generalized to the following.

Theorem 4.1 For each constant k, the problem AfEMBER-{U,., *,_}, restricted -to expres-
sions having at most k occurrences of -1, can-be solved in polynomial -time.

PROOF: Given a word z and a {U, , *, II-expression r, there is an NFA having O(Irlk) states
which accepts L(r). The NFA is constructed as in [HU79, Chap. 2], where interleavings are

handled by the construction described- in Section 2. The NFA is then simulated on input z

as described above. 0

5 Instances of MEMBER which are (P-Complete

The problem MEMBER-{U,., *, } is known to be solvable in polynomial time (see the

solution to Problem 3.23 in [HU79]). We show-in this section that the-problem MEMBER-

{U, *, *,, 1} is AVP-complete. In fact, we will prove an even stronger result by showing that

the following problem SHUFFLE is AP-hard:

An instance of SHUFFLE consists of n + 1 words z, u1 ,..., u,, for some n, and the
question is whether z E L(u, I... I un).

(This is the problem of the last section where the number of strings (k) can be variable.) We

also show that MEMBER-{U, f, n} is AfP-hard even if I is used only-once in the expression.

Theorem 5.1 MEMBER-{JU,.,=,f,I} is AP-complete. The problem remains AfTP-hard
even if only {., ;} are used in the expression, or if {U, ., n, 1} are:sed in the ezpresszon andl

appears only once. Also, these problems remain fP -hard if can alphabet oi sze 3 is used.

We will now prove this theorem by a sequence of lemmas.

Lemma 5.2 SHUFFLE is HfP-hard.

PROOF: We will prove this lemma by doing a reduction from the well known VP-hard
3-dimensional matching problem:

Given disjoint sets W = {WI,W2,...,Wq}, X = {ZIZ2,...,Z 1 1 , Y = -y,y2,... iyq',

and given aset AM C WxXx Y, say Vf = {ml,rm2...,) M. , does MV have a matching?
I.e., does there exist a set V C Af in which every element of W U X U Y appears

exactly once?

Let c be- a symbol not in WU XU Y. We will construct strings z,pj,...,tk over the
alphabet Z = W U X U Y U {c}, such that

z E L(f I / J ... I i .) iff M contains a matching M'.

We will use the following notation: fi(i) (I < j _ 3, 1 < i < k) denotes the index-of the
jth component of in1 . Define n(wi) (n(zi), n(y3)) -to be the total number of occurrences- of
the element wi (xi, yi) in all of the-elements of M.

Now define:
Ili -= WfI (i) Xfi(i) Yf3(i) c

r---- Al I - .. I -Ik

Z = Wl W2 ... wqZl X2 ... qYl Y2 ... yq C w)i
w2()1 ... y) c

(1) M contains a matching #, z E L(r):
Let M' be a matching. Let g(i) (1 < i < q) denote the-ith element in M'. Since M' is a
matching, there is -a way to interleave Y) (q) to obtain the first 4q symbols of z.
The rest of z can be trivially obtained.

(2) z E L(r) * M contains a matching:
The only way to choose the interleaving- to obtain the first 4q symbols of z is to interleave
q whole a's. The corresponding elements of M thus form a matching. 0

Lemma 5.3 MEMBER-{U,., n, I} is AP -hard even ifI appears just once in the ezpression.

PROOF: We will prove this lemma by doing a reduction from the well known XV'p-hard
problem 3SAT. Assume-that we are given a formula C = {cl, c2,..., C, } as a. collection of
m clauses-on a finite set {vl,-v2,... ,vn} of variables such that lcdi = 3 (1 < i < m).

We will use the following notation: pi (1 < i < m) is the set of indices of the variables
appearing positively in c,, and ni (1 < i < m) is the set of indices-of the variables appearing
negatively in ci.

We construct a. string z and an expression r over the alphabet E-= IVV2,..., v, } such
that

z E L(r) iff C is satisfiable.

Let C (1 < i < m) be the regular expression defined as follows:

C, =U ((E - Vk)Ue)n U ((E u -C)n.U VI) U6)n).
kEni l.pi

Thus C, n (E U e)n contains exactly all words of length at most n in which (1) at least one
symbol whose index is in n, does not appear, or in which (2) at least one symbol whose
index is in p, appears. Now let r be defined as:

-=(C n C2 n...n C,) (Z U C)

and z as:

Z--' I V2 ... n-

.(I) C is satisfiable => z E L(r):
Let T be a satisfying truth 'lssignment for C. Let the partitioning of z be such that the

5

symbol vi belongs to the L.3 of "I" iff T(vi) I. In other -words z = xyi ... zxkyk, where
z = zlZ2 ... zk is exactly the sequence of -al variables true under T in ascending order.
Since T is satisfying, we know that for all i (I < i < m) the word z (with IzI < n)-either (i)
contains at least one symbol with index in Pi or (ii) does -not contain all the symbols with
index in ni. From this it easily follows that x is an element of every C, (I < i < m) and we
are done.

(2) z E L(r) =- C is satisfiable:
Let the partitioning of z, by which its membership in L(r) is shown, be z = zIy1 ... kYk.

Thus the word X = .. X2... i.k is a member of every C, (1 < i < m). Thus we can define a
truth assignment:

1 ifviEz
T(Vi) 0 ifv i ; : .

T obviously satisfies every clause. 0

Lemma 5.4 In Lemmas 5.2 and 5.3 we can use an alphabet -of size 3 instead of an alphabet
of variable size.

PROOF: We code all symbols involved in the following way. Let h be a one-to-one mapping
from E to the positive integers. Then we can code every o- in E as "A 140 &". Cor-
rect interleavings are now interleavings in which blocks representing one symbol are never
separated. It is easy to see that correct interleavings are uniquely readable and incorrect
interleavings can be easily detected. 0

We now prove the P'P upper bound.

Lemma 5.5 MEMBER-{J,.,., fl, } is in jVP.

PROOF: Let z be a word in E" and let E be an expression over 5-. We define a "proof"
that z E L(E) recursively as follows. First, if z = c, then the symbol e is a:proof of (z, E) if
c E L(E). In the remaining cases, we assume z C .. (i) If z E E, then z is a proof of (z, z);
(ii) if P is a proof of (z, El), P2 is a proof of (z2, E2), and z = zi • z2, then (z, P • P2)
is a proof of (z, (EI - E2)); (iii) if P is a proof of (z, E) then P is a proof of (z, (EU E'))
and of (z,(E' U E)) for any expression E'; (iv) if Pi is a proof of (z, E,) and P2 is a proof
of (z, E2), then (z, P n P2) is a proof of (z, (EI n 2.)); (v) if P1 is a proof of (zr, Es), P2

is a proof of (Z2, E2), and z =_ L(z 1 I Z2), then (z, PI I P2) is a proof of (z, (ED I £2)); (vi) if

Z = z1 Z2... Zk for some k > l and words z, - c for I < i < k, and if P, is a proof of (z,, E)
for I < i < k, then (z, Pi,..., P.) is a proof of (z, (E')).

Let Q be the relation Q(z, E, P) iff P is a proof of (z, E). The question "i = L(E)?"
can be solved in polynomial time. Since also the question "- E L(z i z2)?" can be solved
in polynomial time (see Section 4), it is easy to see that Q can be computed in polynomial
time. By induction on the structure of E it is not hard to verify that, if P is a proof of
(z, E) and z e, then IPI < 2jzIIEI. We illustrate the induction step for case (vi) (star):

6

k

1I :5 Izi+k+2+EIPI

h

< IzI+ k+2+Z:2izIEI by induction
i=i

_< 21zl + 2 + 21zIEI since k < Izl and z zl... zk

< 21zl(IEI + 3) since Izi -
- 21zl(E*)I.

Now we can write z E L(E)-iff (3P : Q(z, E, P)). It follows that the membership
problem belongs to A(P. 3

Lemmas 5.2 - 5.5 prove Theorem 5.1

6. Inequivalence for Expressions without Star

There are few natural problems known to be complete in the class E. of the polynomial-
time hierarchy [Stock77'. In this section, we add another problem to this list by showing
that INEQ-{U, -, 1} is V-complete. The proof wiit make use of the fact that interleaving is
powerful enough to simulate addition of-positive integers.

Theorem- 6.1 iVEQ-{-,U, } is E'-com.iete.

PROOF: We will prove this theorem in two parts. First that the problem belongs to E;,
and then that it is EP-hard. Both parts of this proof are similar to the proof that the
inequivalence pr9blem for integer expressions is Ep-complete tStock77].

Membership
By induction on the structure of E, it is easy to show that, if E is a {U, ., i}-expressiouand
z E L(E), then izj _< IEl. Let the notion of a "proof" and the predicate Q be defined as in
the proof of Lemma 5.5. The. we can write:

(El, E2) E INEQ{U,-, I} if (z : (_P : Q(z, El, ,)) --- !(-EP2 : Q(z, E2, A,))).

Standard manipulation-of quantifiers and Thc-.,em 3.1 of (Stock77] imply now that INEQ-
{U,-, l} is in El.

1fardness
We first show that, using certain format requirements, we can simulate addition of positive
integers by interleaving.

Let a,.,, for I < i < n + I and I < ;" < -n, be positive integers. For each k, let s. be
the sum of ai.: for I < i < n + 1. Let E be the expression:

E = 12.-. -. b .. . 1aK.rs . 1
I . - "Ia ' -b ... Id) .r, .-b I

I + , . la,+-.g2 -b ... l+I.m

'7

Let R be the set of words over alphabet {1,b} such that every block of consecutive b's has

length at least n + I.

Lemma 6.2 L(E) n R contains the sizgle word F"' •+. . br+ ... i S .

PROOF: For a word in L(E) the only way to build n+1 consecutive b's is to first interleave all
leading-i's from all n+ 1 arguments of the interleaving operator (i.e., ,

1 -,.. * + .

and then all first b's-of the arguments, etc. 03

We now show the desired -hardness result by doing a reduction from (B 2 n DNF), which
is shown, to be E"-hard in [Stock77, Wrath77]. An instance of (B 2 n DNF) is a Boolean

formula G(X 1 ,X 2) where X, (j = 1,2) is a set of variables {z 1 , Z;2,.. . , Zn}, and where G
is in disjunctive normal form, i.e., G = C, V C2 V... V Cm, where each Ck is a conjunction of
litera-s; the question is whether "X 1 VX 2 (G(XI, X 2) = 1). We can assume that a variable
and its negation do not both appear in the same clause.

In order to show the V-hardness of INEQ-{-,U, 1} we will construct expressions E!, E2,
and R such that

XEX2(G(XI, X2) = 0)

if ()
L(E;, -W) c L(E 2 u -).

Letting R be defined as in Lemma 6.2, the expression T1 will have the properties that
L(75) fn R = -0 and L(EI) - P C L(AR). it is easy to verify that these two properties imply
that

L(E1 u)L(E2 u W) iff L(EI) n o1c_ L(E2) n R.

Therefore, to prove (1) it suffices to show

"VX jEX 2(G(X, X2) =-O)

L(EI) -R R C L(E2) n R.

Let us first define R. Since all words in L(EI) are bounded in length by M :- E1, the
following will do:

= ((bul u :: U l -). b- (b u ' -(b U I U c)" .-Uc).

Let ..] be 11 if the expression-in the brackets is true and I if it is false. Let L be the
opposite.
The expression El is now:

u E-:- C1 C -b -[-zi E = - 6 -" - "' : E C.,m.! ,
interleaved with similar subexpressions for =12, ... :

1 - -b ---
+

(The last subexpression contains m repetitions of 1' + !- •b.)
Let Fbe (1-U 12 U 13 U... U 12n).

The expression E2 is:

E2 = ([z21 E C]- b- [21 E C'21-b.-- [z21 E Gj- b
U -: 21] b-[-X21 b... [-Z21 ECm]. b) !

interleaved with similar subexpressions for X2 2 , ... , Z,

F-b F- b ... F-b.

If we now restrict the words in L(E.,) and L(E2) to be in R, we can use Lemma 6.2 to
conclude that all words in L(EI) n R and in L(E 2) f i are of the form

y = I-t . b.+l, is . .b+l + .

It is useful to write numerical expressions for the numbers sk, I < k < m. For words in
L(E1)fl R, the express.uns are functions of 0-I valued variables -p., for I < " < n. Setting
pli = 0 (resp.. pli = 1) means that we choose the LHS (resp., RIHS) of the zth union in El
to produce the corresponding word in L(EI) n R. We also interpret ... as being either I
or 2 (as opposed to 1 or 11). Now y =E L(EI) fl R iff there are p1, E {0, 1} such that, for
I <k<m,

S= Z((' E Cj - plibzii E Ckj) + (n+ -
2=1

The numerical expressions for words in L(E-2)n R involve 0-1 valued variables :2, which,
as above, indicate whether the LHS or RIIS of each union in E2 is used. These expressions
also involve variables fk for 1 < k < ;n, where I fA _< 2.z for all- k; here fA indicates
which word is taken from the kth occurrence of F in E2. Now y E L(E 2) n R iff there are

.2i E {O,1} and fk E {I,2,...,2n} such that, for 1 <k < m,

Sh Z((l - P2.d[Z2. E CdJ + V2,:'2-. E C-kj) _ Ar-
1=1

We now can, as in (Stock77], identify four facts about E, and E2. The following termi-
nology is used. If X is a set of variables, an X-assignment -is an assignment of truth values
to the variables in X. We say that an X-assignment a kii!s the clause CA: if either some
literal = appears in Cp. and z is assigned value false by ct or some literal -z appears in Ch
and = is assigned value tr-e by or.

(a) For each y E L(EI) n R, 2n - I < s : < 3n + I for I < k < rn; and there is an
Xj-assignment such that, for I < :.: < m, s;. = 3n - 1 iff the assignment does not kill

(b) f'or each X1-assignment there is a y 1 L(E 1)n R such that, for I < . < m, s- 3+ 1
iff the assignment does not kill Ch.

(c) For each y = L(E2) n R there is an X-2-assignment such that, for I < < m,if
. 3n - 1 then the assignment kills G.

(d) Let A2 be an- X2-assignment and y be a word over {1,b}" having-the form I" b + 1

1-2 -b1+1... such that 2n+1 < sk __ 3n + I and (sk = 3n - 1) => (A2 kills Ck) for
I < k < m. Then ' E L(E 2) P.-R.

The proofs of (a)-(d) are not difficult. In each case, we must draw a correspondence
between a truth assignment and a word y. As just noted, each word corresponds to values
for the 0-1 variables pi, or p2,. The correspondence between these variables and the Boolean
variables in G is that pj, = 1 iff z.,, is assigned value .rue. We illustrate this for (a), leaving
the other cases to the reader.

Let y E L(E) fl nR. Since each expression t. is either I or 2, it is obvious that
2z + 1 < Sk < 3n + I for all ;.. Consider the Xi-assignment obtained from y via the pl.
as just described. Note that sk = 3n + I iff "2" contributes to each of the n terms of the
sum. Suppose that z1, E Ck. Then [zi, E Ck] has (integer) value 1. Therefore, the %th term
contributes "2" to the sum iff .pji = I if =1, is tr-e. Similarly, if -,, E _k, then the ith
term contributes "2" to the sum iff pi, = 0 iff z., is false. It follows that s:. = 3n +1 iff Ck
is not killed.

Remember that our goal was to show

VXi 1-X 2(G(Xi, X 2) = 0)

iff

L(EI) n R C L(E 2) n R.

Since G(X X2) = 0 iff all clauses are killed, it is easy to prove "only if" from (a) and (d),
while "if" follows from (b) and (c). As noted above, this proves (1). Finally, from (i) we
have

.XiVX 2(G(X 2) = I)

iff
L(E, U E2 U - L(E 2 uZ).

7 Inequivalence for Expressions with Star

4et EXPSPACE denote the class of decision problems solvable by deterministic Turing
machines within space d" for some constant d. The problem NEC-{u,-,-P} is known
to be EXPSPACE-complete. This was first proved by Hunt "aunlt73" who also proved
that this problem requires space c' for some constant c > i. The proof was simplified
by Ffirer Fu rerSO and the lower bound was improved to e'. We show in this -ection
:hat EXP_PACE-completeness of NEC and hNEQ holds also if the intersection operator ,s
Meplaced by the interleaving operator.

Theorem 7.1 !sVEQ-{-,U,-, '} and .VEC{.,1J, -,J a - EXPSP-1CE-c:-...e e.

10

PROOF:

(1) IHNEQ-{u,-,-,} E EXPSPACE.
Given {U,-,-,)}-expressions El and E2 of length at most n, it is easy to build NF A's
M, and M2 with 0(2') states which accept L(EI) and £(E2), respectively. The product
construction of Section 2 is used for 1. Using the simulation method described in Section 4,
it is easy to show that equivalence of NFA's can be decided by a nondeterministic Turing
machine within space proportional to the size of the NFA'S (Thin. 13.14 of [I[U791 uses a
similar proof).

(2) NEC-{U,-,-, I} is EXPSPACE-hard.
Ffrer proves in [Furer80] the EXPSPACE-hardness of NEC-(u,-, -,fl} by doing a generic
reduction from an exponential-space Turing machine. This proof will serve as a basis for our
proof. We will show that by adding new format requirements for words describing accepting
computations we can simulate the intersection operator by the interleaving operator.

The key in Ffirer's proof is that the there is a succinct (i.e., its length is 0(n)) expression
with intersection r. which describes the language P,' {zTq "a: z e r-,jwj = ,,- E [a},

where r is a finite alphabet and where w-:? denotes the reverse of z. ;.-. can be defined
inductively as follows:

-To. = =I r- ' TrTF7

riIr -ri -r n -e r'-7

Thus r- contains n nested occurrences of 'I". We now show that we can describe a
language similar to P, by an expression which contains -z nested occurrences of v-', provided
that words are required to have a certain restricted format. Let I- = {7:,---, 74. Let c be
a symbol not in r. If , = wiut, ... -. where wi e r for I <- , and if. is a positive
integer, then

Also, ik) = . Letting A be any language over P. define AV'4 = { "?): i E A }.
Words having the required format are in the set R4 defined as:

&W = (r-)€O = (C;U u ... u 7--.

Let the expresion s. be defined inductively as follows:

S0 ' ,-

Note that the length of s, is 0(2).

We now .im that those words in s; which are restricted to be in R,;--!; describe a.
lanEUaZe simiiar to the one described by T3. This will be proved in Lemma 7.4 following
two preliminary lemmas. The first lemma. follows immediately from the definition of the S:.

Lemma 7.2 !f= E L2s,), - ,-yyc3Tsomee

11

To state the second lemma, we need a definition. If w E (r u {c})*, let M(?u) be the
maximum length of a subword u of w such that u E r* U {c}'. Note that if w E L(y Iz),
then M(w) < M(y) + M(z).

Lemma, 7.3 If w E L(si), then M(w) < j + 1.

PROOF: The proof is by induction on j. The basis j = 0 is obvious. Assume the lemma is
true for some j. To prove the induction step, let w E L(sj+l). Then w E L(y I z) for some

y E L(rj+ l ' cj+l • si • r3+1 .cj' l) and z E L(U.,ErY -c . (r .-c) • -t c).

By Lemma 7.2 and the induction hypothesis, M(y) < j + 1. It is obvious that M(z) = 1.
So M(w) < j + 2. 0

We can now prove the connection between L(s,) and P,.

Lemma 7.4 L(s;) n R0'+1) = (pj)(+i.

PROOF: Our proof will be by induction on j.

Induction Basis: If j = 0, then L(so) n R(1) = r. c = (Po) 0).

Induction Hypothesis: L(s)) nfR(l) = (pR)0+').

Induction Step: We want to show that L(sj+i)fn R(j +2) = (P)+i)(3+ 2). It is easy to see that
(P+)U +2) C L(s,+i)nlR0+2), so we only show the opposite inclusion. Any word- in R0 +2)

is made of "chunks" consisting of j + '2 identical symbols of r followed by j + 2 c's. Let
zyz E L(s,+i) R(3+ 2), where x is the first chunk, z is the-last chunk, and y is all chunks
in between. Using Lemma 7.2, the first and the last chunk, z and z, must result from the
interleaving of ,j+i . c)+, and -1 " c. Moreover, since the same y must be used for both z
and z, we have z = z. The word y must result from the interleaving of some y' E L(s,)
and (r . c)*. From this and Lemma 7.3, we can conclude that only those words y' E L(s3)
which are also in R3+1) can be used to form a word in R0 +2). By the induction hypothesis,
Y I E (P)CJ+ 1). Since y is a concatenation of chunks, it follows that y E (P))(3+2). Since
z = z, it follows that xyz E (P+1)(1+2). 0

We now describe the reduction. Forsimplicity, we do the reduction from a deterministic
one-tape Turing machine M with space bound 2 n - 3. The extension to general exponential
space bounds is straightforward. Let M have tape alphabet T, state set S, accepting states
F, and start state qo. Let z be an -input to M, arnd let n = IzI and m = 2n- 1. Let

ZID = TU(SxT)u {$}. An ID of M is a word of length m in (ZID)" of the form Su(q, ce)vS
where uv E T'; this ID means that the string uav is written on the tape, and M is in state
.scanning the symbol ce. (This representation of ID's is slightly different than the one used
in [Furer80], but it is convenient for our purposes.)

As in [Furer80], we use "marked binary numbers" to index- Lhe symbols of an- ID. A
marked binary number is a word over the alphabet {0,Q, 1,1} in the language described by
the expression (0U 1)' Q U a.*; i.e., the rightmost (lowest order) I is marked, as well as all
O's to the right of this 1; and in the representation of 0, all O's are marked. For integer j

12

with 0 < j < m, letl[jJ denote the length-n marked binary representation of j. The marking
allows the successor relation to be tested locally as follows. Define succ(O) = succ(Q) -= {0, l}
and succ(1) = succ(1) = {-,0a. If Yn ... Y1 =-jj] and z = z, ... zi is a marked binary number
of length n, then z = [-+ 1 mod 2'] iff zi E succ(y,) for I < j _< n.

Let E = EID U {0,Q, 1,1,#, &,c} and r = z {c}. The accepting computation of M
on input z, provided that it exists, is represented by the following word a E X':

a = (a')(n+l)

where

a' = &[0] R #[0J&[1]R ai, [1] &[2]Ral,2 21& . . .

... [] a,,, [(m] & [o]R #-[o] & [1jR a2,1 [1] & ... (2)

[m]" a2,,. [i] & [o]R # [0] & [1]R a3,1 [1] &..

... []R' ak,, [in] & [o]' # [0] &

where ai = aiaj,2 ... aj,,-is the ith ID in the computation of M on input z. (In [Furer80],
the word a' is used to represent an accepting computation.) We say that a word a E Z" has
the correct framework if a = (a')(' +1) for some word a' as in (2), where ai,i = ajr = $ for
1 < i < k, but where the symbols a,,,, for 1 < i < k and I < j < m, can be any symbols of

lID.
We now simply have to enumerate the mistakes which imply that a word is not a

computation of M on input z. Each type of mistake is d,,scribed by an expression. Letting
E, be the union of these expressions,'it follows that L(E.) 4 Z" iff M accepts x. The
length of E, will be O(n2). The following enumeration of mistakes was chosen to highlight
the more interesting and original parts of the construction. For example, we consider "not
having the correct framework" to be a single type of mistake, even though this could be
broken down into several types of lower level mistakes.

0. The expression Eo describes all words not in R(1+1).

1. When restricted to words in R (,+1), the expression El describes all words which do
not have the correct framework.

2. When restricted to words having the correct framework, E2 describes all words such
that a, is not the initial ID of M on input x (i.e., a, I S(qo,z)z2 ... -
where B denotes the blank tape symbol), or such that no symbol of the form (q,ce)
appears where q is an accepting state.

3. When restricted to words having the correct framework, E3 describes all words which
have a "computation error", i.e., words such that some a,+I,) with I < j < rn does
not follow correctly from ai,,_-,ai,,aij+' by the transition rules of M.

We first describe E3 in detail, since it is the more interesting part of the construction.
Let f : (EID) 3 - ZID be such that, in any correct computation, ai+l.) "" f (a,-,,,,a,,,+I)
for all 1 < i < k and 1 < j < m. All such occurrences can be found, because a, is to

13

the left of xUJ(J , a+l) is to the right of ((J],)(n+1) and there is-exactly one block of
#s between them. Thus the relevant part of a word representing an accepting computation
must look as the following:

([j-- l]R)(n+l) .(a, n+I) ([j - 1J)(n+1). &(n+1) .

([j]R)(n+1) (ai, (n+I). ([j])(f+l) . at=+l)

([U + (a, 3+,)(n+ l) . (j + I])on+ l)• &(n+l)

#(n+i)

([j]1)(n+l -) (aj+ ,j)(n1)". ([j])(n+ 1)

Now we can construct an expression similar to the one in Lemma 7.4 to denote all wrong
computation steps. Let , be symbols in SID, corresponding to ai,j-, aj,, a1 ,,+j,

respectively.

to() = (r . .c. ((r - {#). c)- c. ((r - {#). c-

t+ 1 () = (r3+, . c3+l . t3(O. r3+1. c3+ l) I (Ur -Y c. (r. c) .,. c).

As in the proof of Lemmas 7.2-7.4, the following can be proved by induction on j.

Lemma 7.5 w E L(t,()) n R(' +1) if there exist words z E r;, u e F" + , and v,y E
(Pr- {#}), such that w = (zu.v#yzR)(3+).

Now B 3 is the union, over all IL, v, E SID, of:

. (n+) .24n2+6n+2 ((o - { ,(n! })(n-,)

As mentioned, Eo denotes the mistake of a word not being in L(R(n+1)). We split Eo
in four categories, i.e., Eo = U'=, Eo. Eol (E0 2) takes care of the case of a block being
too short (long), E 03 describes the case where not every other block is composed of c's, and
E04 describes words which start and end wrong:

E01 = UE62(Zo (e U (2p - {}))) .a. (a U E)"- . (C U-((E - r}). p,))

E02 = 2E Z' .-r2

E 03 = (C U (2 . c)). (Z - {c}). F . (Z - {C}).

0 4 =c- "U .(2-{c}).

The expression El which desciibes all framework mistakes is conceptually not difficult,
since the checking can all be done "locally", i.e., the symbols to be checked are within
distance 0(n 2). This expression can be based on the ones given- in [Furer8OJ. For these
reasons, we do not write El in detail. For illustration, we write an expression for one type

14

of framework error where the marked binary numbers embedded in the computation a are
not incremented- correctly. The relevant part of a word having the correct framework is

... ([j)(n+1) &(n+i) ([j + 1 mod 2 n]R)(n+i)

.'t D = {0,0a,1, 1I}, and let r+ = r . r*. Recalling that we can restrict attention to words
in R(n+i), the following describes all "incrementing mistakes":

n-1U U .* .(D* .c+), .&+ -c .(D+ c+)'. (D -succ(a)) t .C+

j=0 aED

The interested reader can easily complete the construction of El by writing expressions of
length O(n 2) for the other types of framework errors.

The construction of E2 is-also straightforward and is left to the reader. 0

Since the length of E. is O(n 2), a lower bound on space complexity follows by a standard
argument (e.g., pg. 418 in (AHU74]).

Corollary 7.6 There is a constant c > 1 such that no deterministic Turing machine with
space bound cvn- can accept NEC-{U, -, *, 1} or INEQ-{U,., -, 1}.

Note that this lower bound (cvr') does not match the upper bound (d').
By using a coding like the one described in the proof of Lemma 5.4, it can be shown

that Theorem 7.1 and Corollary 7.6 remain true for expressions over an alphabet of size 3.

Acknowledgements: The first author wishes to thank his advisor Paris Kanellakis for the
help during this work and the "Alice Mayer Foundation for Gifted Swiss Students of Jewish
Hungarian Descent" for partial financial support.

References

fAHU74 A.V. AHO, J.E. HOPCROFT, AND J.D. ULLMAN, The Design and Analysis of

Computer Algorithms, Addison-Wesley, Reading, MA, 1974.

[Eilen74] S. EILENBERG, Automata, Languages, and Machnes, Vol. A, Academic Press,

New York, 1974.

FFurer80] M. FtORER, The complexity of the inequivalence problem for regular expressions
with intersection, Proc. 7th ICA LP, Lecture Notes in Computer Science, Vol. 85,
Springer-Verlag, New York, 1980, pp. 234-245.

(HU791 J.E. HOPCROFT AND J.D. ULLMAN, Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, Reading, MA, 1979.

flIunt73] H.B. HUNT III, The equivalence problem for regular expressions with inter-
section is not polynomial in tape, Tech. Rep. TR 73-161, Cornell University,
1973.

15

[ItRS76] H.B. HUNT III, D.J. ROSENKRANTZ, AND T.G. SZYMANSKI, On the equiv-
alence, containment, and covering problems for -the regular and context-free
languages, J. Comput. System Sci. 12 (1976), 222-268.

[IPC85] O.H. IBARRA, M.A. PALIS, AND J.H. CHANG, On efficient recognition of
transductions and relations, Theoretical Computer Science 39 (1985), 89-106.

[KS90 P.C. KANELLAKIS AND S.A. SMOLKA, CCS expressions, finite state processes,
and three problems of equivalence, Information and Computation 86 (1990),
43-68.

[Miln80] R. MILNER, A Calculus of Communicating Systems, Lecture Notes in Computer
Science, Vol. 92, Springer-Verlag, New York, 1980.

[Miln84] R. MILNER, A complete inference system for a-class of regular behaviors, J.
Comput. System Sci. 28 (1984), 439-466.

[Stock74] L.J. STOOKMEYER, The complexity of decision problems in automata theory
and logic, Tech. Rep. TR-133, MIT, Project MAC, 1974.

[Stock77] L.J. STOCKMEYER, The polynomial-time hierarchy, Theoretical Computer Sci-
ence 3 (1977), 1-22. 1 1

[StM73] L.J. STOCKMEYER AND A.R MEYER, Word problems requiring exponential
time, Proc. 5th A CM Symp. on Theory of Computing (1973), 1-9.

[vLN82] J. VAN LEEUWEN AND M. NIVAT, Efficient recognition of rational relations,
Information Processing Letters 14 (1982), 34-38.

Wrath77] C. WRATHALL, Complete sets and the polynomial-time hierarchy, Theoretical
Computer Science 3 (1977), 23-33.

16

